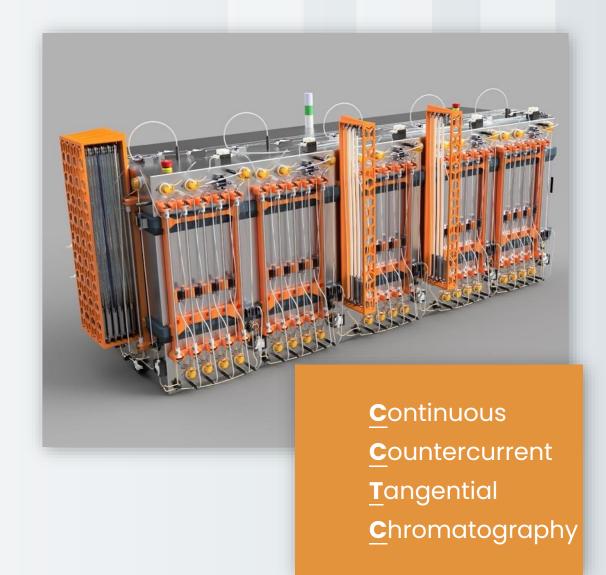

Vision & Mission

Transformational next-generation biomanufacturing solutions.

Empower biopharmaceutical manufacturers with the **first-ever**, **columnless**, **single-use continuous chromatography platform**, offering enhanced flexibility, scalability, and purity, reducing resin consumption and downtime, and maximizing productivity for the cost-effective production of life-saving therapies.

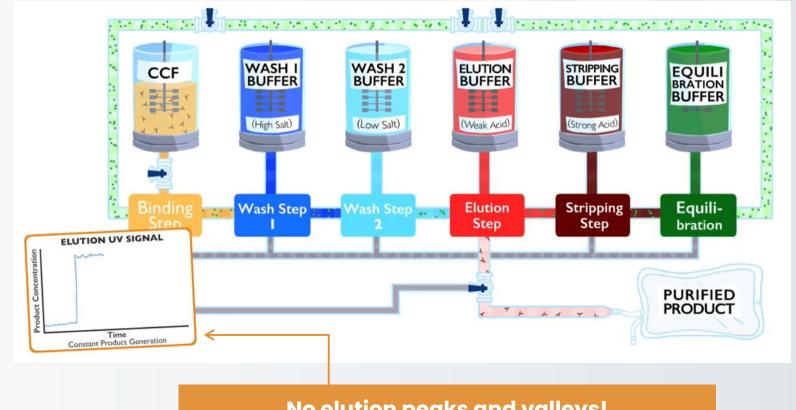
Chromatography: Revolutionizing a **Critical Bioprocessing Bottleneck**



Overcoming Bioprocessing Inefficiencies with CCTC

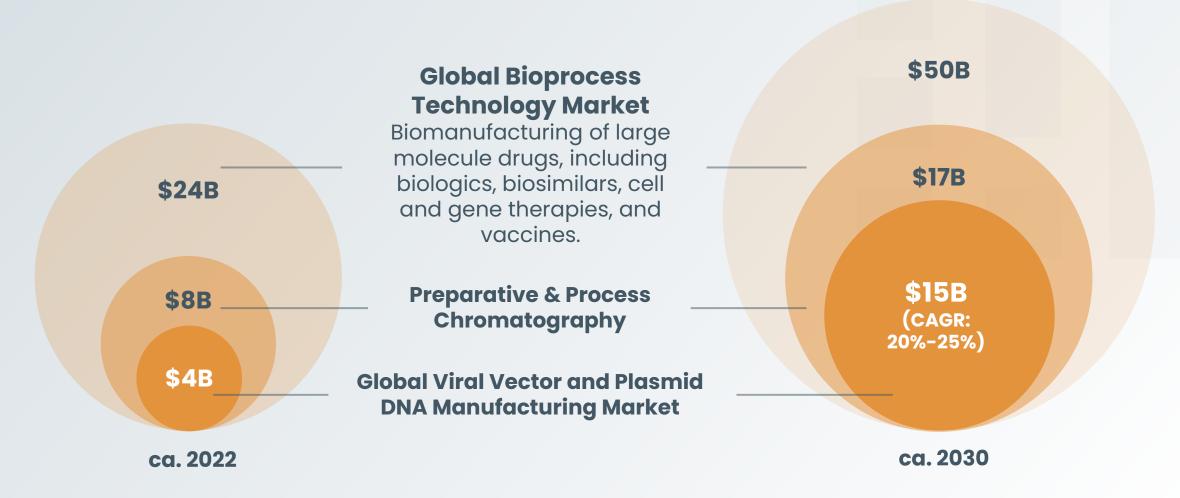
CCTC vs. COLUMN CHROMATOGRAPHY

Fast cycle times	minutes vs. hours, days
High product recoveries	>95% vs. <80%
High purity AND high yield	vs. EITHER/OR
Modular scalability	vs. non-linear
Low operating pressures	<3-15 psi vs. 30-50 psi
Single-use flow path	no cleaning-in-place rapid turnaround

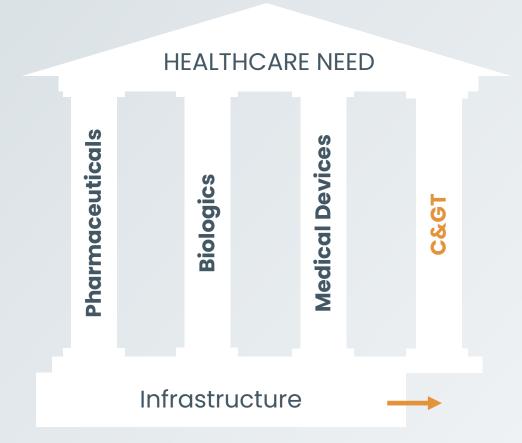

How Are We Able to Accomplish All That? The CCTC Operating Principle

Real Moving Bed Principle

Different operations are performed on the resin slurry as it is gently pumped in a continuous loop like a conveyer belt.


Single-Use

Entire flow path is designed for single-use economics.


No elution peaks and valleys!

Global Bioprocessing Market by Sector

https://www.grandviewresearch.com/industry-analysis/viral-vector-manufacturing-market; PitchBook; Company Database

Cell & Gene Therapies: The Fourth Pillar

Infrastructure Needs:

- Scalable manufacturing
- Regulatory structure
- Reimbursement structure
- Adoption as standard of care

Chromatography is a critical element of infrastructure.

Mason et al, Regenerative Medicine 2011

Why Are Viral Vector (AAV, LV) Products Not Suited for Column Chromatography?

- AAVs and LVs are larger and more sensitive products than protein therapeutics.
- Low product recoveries (AAVs <60%; LVs <40%).
- Products are sensitive to process conditions:
 - Column-based processes negatively impact product quality
 - High pressures cause high shear degradation leading to column blockage
 - Difficult to control local product concentrations
 - Long residence times in unfavorable conditions

- Very expensive resins, with low utilization:
 - **\$25,000** per liter resin
 - 1-2 cycles typically used per campaign
 - In clinical production, expensive resins are discarded after 1-2 cycles
- Current platforms do not provide scalable solutions
- Standardized production systems yet to evolve.

Viral-Vector Therapies at Scale: **Challenges, Opportunities & Drivers**

MARKET:

Preparative & Process
Chromatography

\$4B

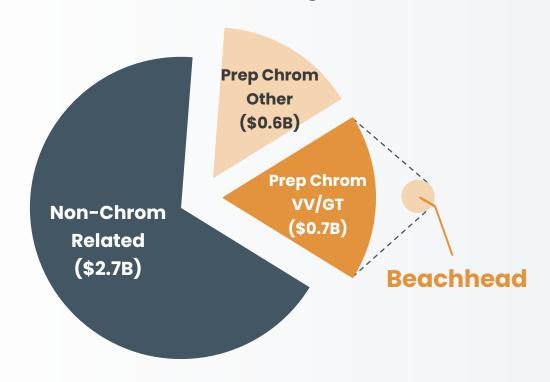
Leading Edge

• Large CDMOs have **invested** heavily (\$8B) in this space, with several large acquisitions in the past few years.

Patient Access

Leveraging developments in viral-vector manufacturing to **accelerate** patient access.

Downstream Processing


 Increasing demand and broader application of viral-vector-based gene therapies requires higher yields and lower cost of goods (COGs).

McKinsey & Co: Viral-Vector Therapies at Scale - Today's Challenges and Future Opportunities, 2022.

Our Beachhead Market

Viral Vector & Gene Therapy

Global VV & GT Manufacturing Market (2022/23)

Examples of Drug Development Companies

- 1. Spark Therapeutics
- 2. Miltenyi/Lentigen
- 3. Capsida
 Biotherapeutics
- 4. Ultragenyx
- 5. Gilead/Kite Pharma
- 6. Moderna-mRNA

Examples of CDMOs and Other

- ViveBiotech-LV Pureplay
- 2. Resilience
- 3. FujiFilm Diosynth
- 4. Thermo Fisher
- 5. Repligen
- 6. BioVectra

https://www.grandviewresearch.com/industry-analysis/viral-vector-manufacturing-market

Listed in no particular order.

Record-Breaking Competitive Advantage

CCTC Serves Many Verticals

PROTEIN-BASED	OTHER	GENE THERAPY
Monoclonal Antibodies	Plasma purification	AAV, LV, mRNA

Several Successful Campaigns

Solid Proof-of-Concept Data

- Paid collaborative development programs with bluechip biopharma clients
- End-to-end continuous integrated biomanufacturing platform
- Highly innovative and technically advanced singleuse flow path design

Efficient Bioprocessing

CCTC Outperforms Conventional Chromatography

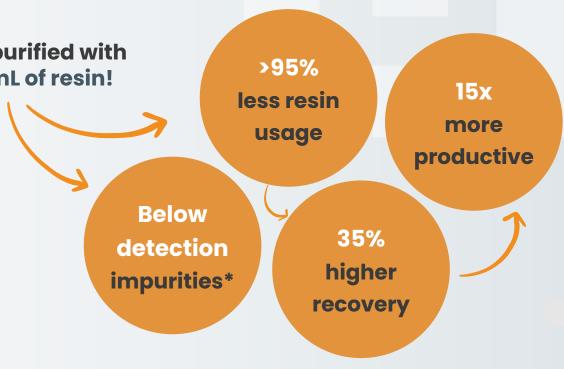
The **Beachhead**

Viral Vector & Gene Therapy

GENE THERAPY

Adeno-Associated Viruses Lenti Viruses, mRNA¹ Other Viral and Non-Viral Vectors

Record-Breaking Performance


CCTC Outperforms Conventional Chromatography

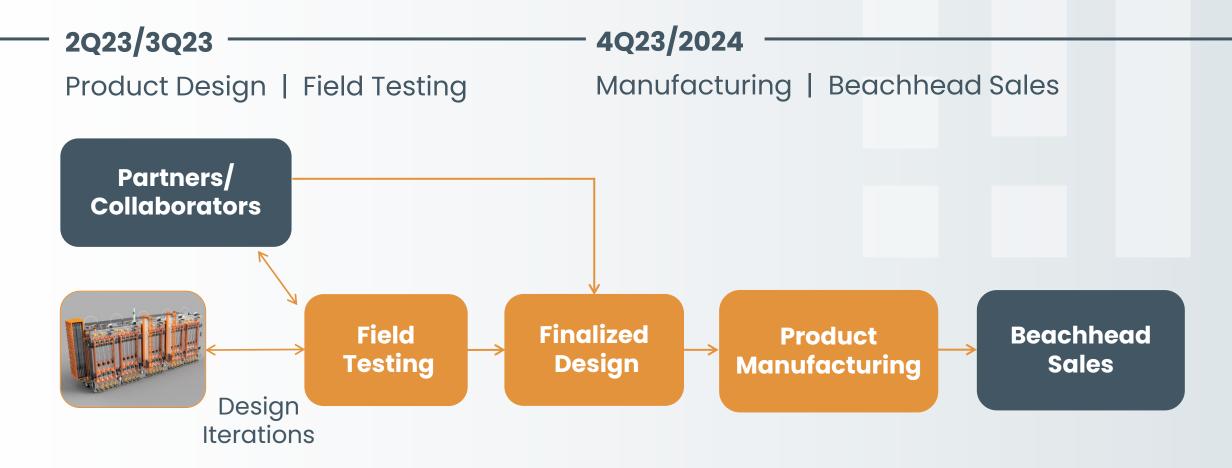
40L AAV purified with only 14 mL of resin!

Meets Growing Gene Therapy Demands

Captures the Highest-Margin Opportunity

- Fastest-growing market segment (22%-27% CAGR)
- **2,220** active clinical trials globally²
- 95% of programs have **not locked in CMC**
- Significant cost savings to using vastly smaller amounts of expensive resin

* Host cell protein & DNA


¹ mRNA: messenger RNA. ² bionewsletter@bio.org, Wed, Jun 21, 2023

Dominating the Competition: Unmatched Potential

	[!] ChromaTan	Millipore SiGMa	SVISCIEVS	PROCESS TECHNOLOGIES
Column-free	√	\otimes	\otimes	\bigotimes
Continuous elution	√	\bigotimes	\bigotimes	\bigotimes
Single-use	\checkmark	✓	✓	\bigcirc
Scalability	√	\bigotimes	\bigotimes	✓
Cost savings	√	√	✓	✓
Ease of use	✓	\bigotimes	✓	✓
SCORE	6	2	3	3

Go-To-Market Strategy

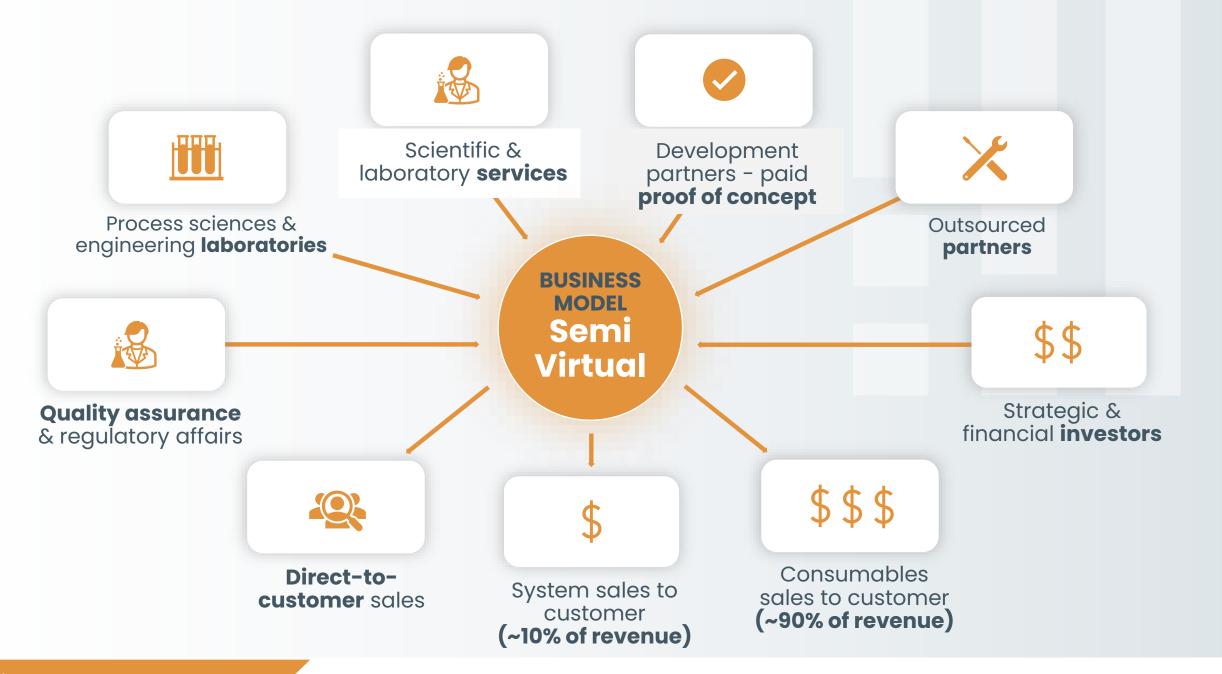
ChromaTan Market Launch: 3-Phase Process

Phase I

Launch of CCTC Mini for Process Development

- Formal launch in September 2023 at BPI, Boston
- Target market Viral Vector and Gene Therapy

Phase II


Launch of CCTC Mini for small-scale cGMP batches

• Target Q2 2024

Phase III

Launch of CCTC scale up system

Target Q4 2024

Rajiv Datar, Ph.D. CEO Alfa-Laval/Kabi/Pharmacia, Genentech, Pall Chemical & Biochemical Engineering

Oleg Shinkazh Founder & CTO Millipore, Pall, Genentech, Biogen Chemical & Biotechnology Engineering MIT EDP '23

Post-Doc/Doc MIT/KTH; MIT EDP '23

Craig Pointer Associate Director, Engineering Large-Scale Manufacturing MS Chemistry, Lehigh

Operations & HR Project Management, Bookkeeping, Inventory BA Villanova University

A **Leadership** Team with **Deep Experience**

Thiago Millen, Ph.D. **Associate Director, Process Development** Process Design, Cell & Gene Therapy MS Biol. Chem. & Struct. Biol., UFRJ, Brazil

David Fogel, CPA CFO & Business Advisor Finance, Accounting Adjunct Instructor, Tufts, Worcester Poly. Inst.

Yvonne Connolly

Industry **Traction**

Scale revenue

- Raised \$2.1m Bridge
- Team build to 20
- Positive POC for 2 paid client development programs
- Raised \$2.4m Bridge
- Appointed CEO (Q2)
- Launch go-to-market strategy for PD units (Q3)
- Deliver first PD units (Q1)
- Close first PO for largescale CCTC unit (Q3)
- Deliver first large-scale CCTC unit (Q4)

 Pursue new applications

FUNDING

\$5m Raised

\$10m Awarded

US PATENT NOS.

11110374 | 10859542 | 10324070 | 7988859 | 7947175

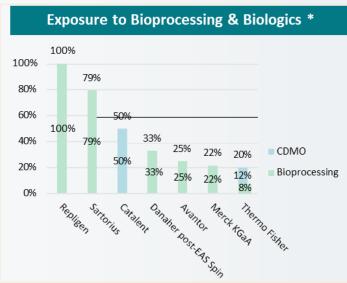
YEAR	ACQUIRER	TARGET	DEAL SIZE	REVENUE	DEAL/REVENUE	DEAL/INVESTMENT	DEAL/EBITDA	CATEGORY
1998	Perkin Elmer	PerSeptive Bio	\$360M	\$96M	3.7x	6х		Bioinstrumentation
2013	Sartorius	TAP Biosytems	\$45.1M	\$27.2M	1.7x		227x	Cell culture & fermentation systems
2014	Repligen	Refine Technology	\$26.5M	\$8.3M	3.2x			Cell retention & separation systems
2015	Pall Corp	Tarpon Biosystems		\$1M-\$5M				Multi-Column Chromatography
2015	Danaher	Pall Corp	\$13.6B	\$2.8B	4.9x ¹			Conglomerate
2016	Repligen	TangenX	\$37.2M	\$5.1M	7.2x ¹			Bioprocessing - MF & UF products
2017	Thermo Fisher	Finesse Solutions	\$221M	\$50M	4.4x			Bioproc tech management software
2017	Millipore Sigma	Natrix	\$22M (14+7)					Membrane chromatography
2017	Repligen	Spectrum Labs	\$371M	\$39M	9.4x ¹			Bioprocessing - broad
2020	Sartorius	WaterSep	\$33M	\$2.5M	13.1x ¹			Hollow-fiber membranes/devices
2021	Mettler-Toledo	PendoTECH	\$205M (185+20)	\$36M-\$37M ²	5.6x			Biopharma - single use sensors, etc.
2021	Donaldson	Solaris Biotechnology	\$45.7M	\$0.55M	82.9x			Bioproc. equipment - fermenters, bioreactors, TFFs, sensors, etc.
2022	Donaldson	Purilogics	\$48.9M (19.9+29)			9.1x (Deal/Grants)		Disposable membrane chromatography
2023	Donaldson	Isolere Bio	\$62.5M			8.6x		TFF tech for AAV and MAb production
2023 (Jun 29)	Donaldson	Univercells	€136M	€10M	13.6x ¹			Single-use fixed-bed bioreactor for intensified production

6.7x: Average of categories (excl. Donaldson outlier)

19.6x: Bioprocessing average (excl. Donaldson outlier)

Source: PitchBook.

² https://www.sec.gov/Archives/edgar/data/1037646/000103764622000008/mtd-20211231.htm, page 36.



Bioprocessing: Competitors & Collaborators

- Combined, the
 Bioprocessing Sales of the
 top 5 companies are
 estimated to be ~\$21B.
- The dominant supplier is Danaher, with a portfolio spanning upstream and downstream solutions.
- Historical bioprocessing compounded growth has been solidly in the double digits.

Source: Nephron; ChromaTan Database

Record-Breaking Competitive Advantage

		PALL DATA				MILLIPORE ³	CHROMATAN CCTC4	
SORBENTS: PROTEIN A ANION EXCHANGE (AEX)	BATCH ¹	MULTI- COLUMN (SMB) ¹	MULTI- COLUMN (SMB) ¹	BATCH ²	MULTI- COLUMN (SMB) ²	MULTI- COLUMN (MOBIUS)	PRO A-MAb	AEX Polish
No. of columns	1	3	4	1	5	2	0	o
Residence time (min)	5	1	1	3	3	6	Steady- state	Steady- state
Loading product concentration (g/L)	0.4	0.4	2.2	5.8	5.8	4.0	2.3	8.5
Cycle time (h)	8.6	4.9	1.3	4.0	0.9	1.2	0.25	0.25
Productivity (g prod/L resin/h)	3	8	31	16	56	40	140	350

ChromaTan's CCTC technology is dramatically more productive than competing technologies

⁴ ChromaTan CCTC: Continuous Countercurrent Tangential Chromatography. https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27232. Company documents.

¹ Pall SMB. https://biopharma-asia.com/featured-article/productivity-economic-advantages-coupling-Single-Pass-Tangential-Flow-Filtration-Multi-Column-Chromatography-continuous-processing/
² Pall SMB. https://biopharma-asia.com/magazine-articles/scale-up-of-multi-column-chromatography-using-the-cadence-biosmb-process-system/

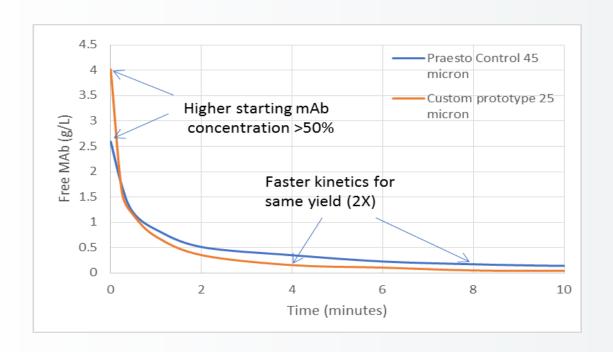
³ mobius-multi-column-capture-system-ds8089en-ms.pdf (sigmaaldrich.com)

Collaborative Case Example: Increased Productivity and Higher Loadings

OPERATION	YIELD	PRODUCTIVITY (G/L/HOUR)	BUFFER USAGE L/G	RESIN VOLUME ML	PROCESS TIME (HRS)	BATCH VOLUME (L)
CCTC - CaptoAdhere Impres	95%	101	3.3	51	5	4
CCTC - CaptoAdhere	95%	67	3.3	78	4	3.2
Column Operation	90%	9.3	1.3	404	5	4

11-fold increase in steady-state productivity vs. batch column:

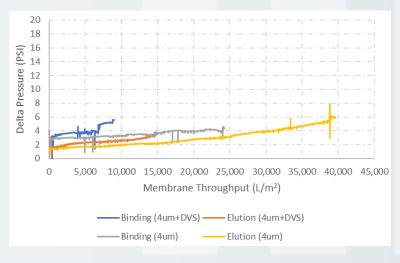
- 8-fold increase counting startup and shutdown;
- 8-fold savings on resin volume;
- CCTC 5 resin cycles per hour with CaptoAdhere Impres;
- 2 cycles per 8 shift in column batch operation.


Higher loadings - ~6.5 g/L for CCTC; ~4.7 g/L for batch column operation.

Collaborative Case Example: Novel

MERCK

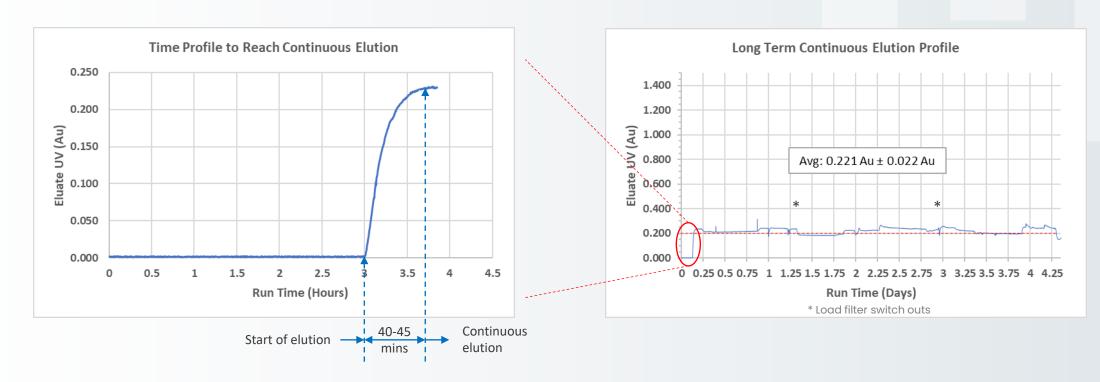
Resin Design Leads to Record-Breaking CCTC Productivity




- New CCTC protein A resin design:
 2X faster kinetics compared to control resin.
- Specific productivity: 140 g of MAb/L resin/h (3X higher than closest competitor).
- Dynamic binding capacity: increased by 70-80% vs. control: 60-70 g/L vs. 35-40 g/L.

Integrated Continuous Processing Example: CCTC Mock Perfusion Purification

Steady State Purification


- Bi-specific antibody purified
- Accelerated run high loading purification mocking a 20-day operation in 4 days
- Steady state run of 115 hours
- Constant product quality over run duration
- Resin cycle time of 1 hour used; 115 cycles
- Only 2-3 Liters of proA resin was used for 400
 L/day throughput

A 4-Day Continuous Elution Run Using the CCTC System

- Adsorbent: Protein A
- Feed: Bi-specific monoclonal antibody

